Maharishi, TM & Beyond
Engin Öztürkulu

Maharishi Mahesh Yogi, who introduced the West to Transcendental Meditation (TM), died in the Netherlands on February 5 at the age of 91. TM was originally viewed with skepticism but eventually gained worldwide acceptance and medical credibility. The movement really took off after the Beatles visited Maharishi’s ashram in India in 1968. Maharishi had a profound influence on the Beatles’ later career. Other famous practitioners of TM include the Beach Boys, Rolling Stones, Mia Farrow, Sheryl Crow, Sting, radio host Howard Stern, and singer and song writer Donovan. Comedian Andy Kaufman and magician Doug Henning were also students of Maharishi, while Hollywood directors Clint Eastwood and David Lynch have both practiced the technique. Maharishi left six million TM practitioners and worldwide TM organizations behind.

TM was dismissed as hippi mysticism in the beginning. However, Maharishi’s relentless persistence on its scientific validations was unquestionably remarkable. Partly due to his efforts, there have been more than 600 scientific studies on the effects of the TM program that have been conducted at 250 independent universities and research institutes in 33 countries throughout the world over the past 40 years.

Reported individual health benefits aside, creating coherence in world consciousness and changing the global mood are among TM’s claims. These claims aim at working for the good of the society. However, some people might simply do it in order to achieve self-salvation, a guilty conscience, and for love of the spotlight. On the other hand, we also do it because there are many with the same thoughts, and thought is infectious when transmitted by a channel in which it can flow. In this sense, TM’s claims do not have to be transcendental.

It is indeed sound practice to separate scientific theory from spiritual values, but to deny that there is any validity beyond the findings of science is absurd. It is no wonder that much of today’s science revolves around controlling pain. We humans don’t like pain and seek to avoid it. We are doing pretty well at it, and will do better. Perhaps we think that we are dedicated to the search for knowledge, but is that all? The old great question still abides: are we also dedicated to a search for truth? In another sentence, the word “truth” any meaning beyond con venience? There is plenty of evil in the world, and there long will be. There is also compassion kindness. The whole can present to all a life worth living. Yet this is by no means a final and satisfactory answer to the great question above. For the sake of argument, suppose we’ve conquered them all: diseases, poverty, violence, hate, etc. Is that why we live on the earth? Just to be comfortable? Just to create a soft uptopia? Is that all there is, and have human beings no other mission? If we build a utopia would we then be eternally happy? If not, then what?

In Our Good Books

The reading suggestions have been kindly provided by staff members of the downtown bookstore McNally Robinson.

Submit your bad science headlines to Natural Selections.

The reading suggestions have been kindly provided by staff members of the downtown bookstore McNally Robinson.

Submit your bad science headlines to Natural Selections.

SCIENCE DECONVOLVED

NEWS: EFE News Agency, Un ratón sin uno de sus proteínas muere degenerando neuronal (A mouse without a protein will help neuronal degeneration).

Caught something?

Submit your bad science headlines to Natural Selections.

COCO144

Graffiti in the Lab
Manuel Castellano-Muñoz

If you have recently walked through the corridor in the lower level of the Bronk Building, you might have noticed that the wall near the elevator has been covered by plastic sheets for almost two months. "Oh, it's being repaired," you might have thought. Well, the truth is far from that! Behind all these plastic sheets is a graffiti mural. Natural Selections got in touch with the painter of the mural, who turned out to be a Rock eford employee. His artistic nickname is COCO144.

Dr. Hud- speth wanted a mural for the outer wall of his lab at Bronk. He wanted to "do it over," explained Coco, "He has been extremely supportive and very brave to take on a challenge like this." He gave me some articles, drawings, but he kept on insisting that it didn't have to be science specific. But I did want to incorporate something that had to do with his research, so I did my own inter- pretation of what I've been seeing, what he studies, and everything else that I can improvise on." Coco never had any formal training in art, but he has a born talent. He belonged to the first generation of painters who started painting in the New York subway system in 1970. In 1972 he co-founded a group called United Graffiti Artists, the first to take the energy from the subways and streets to painting on canvas. After their first show in The City College of New York in 1972—when they were just 13 to 15 years old—they collectively took part in many events around the city, including collaborations with dance groups, projects in museums, and shows at art galleries in Soho.

Although the group disbanded in 1976, the graffiti culture in New York didn't. It took off again in 1977, when the hip-hop movement came up strong. Since then, new generations of artists have kept raising the new mural at RU is another bridge he is crossing from art to science. Although they might be seen as completely different fields, science and art share similarities. "This is like my experiment," explains Coco, "You have to do a certain amount of research, studies, you go through experiments until you get it right." Coco is delighted to paint science. "To me, there is nothing but pros. The only thing that has really challenged me is the challenge on these pieces is the space, because the outer wall contains two feet away from the wall. I have not had the opportunity to step back and look at it." During the last two months, Coco has managed to execute some of the graffiti tech niques in a tiny sheltered space while plenty of people passed by without noticing him. For instance, in order to paint an enlarged version of a hair cell bundle that he got from a sketch, he photocopied it on transparent plastic paper, put it over a projector before a 20-by-14-foot wall, and drew it on paper following the projected image on the wall. After that, he brought it to the Bronk building, glued it onto the wall, traced his reference lines, took the paper off the wall, and then started to paint. He has done that with two or three pieces. The rest has been redone.

The mural, which has been modeled on a natural selection, has been shown in the United States, Puerto Rico, Mexico, Cuba, and Europe. In the last ten years he has been incorporating scientific subjects into his murals. "It's always my name, but I paint it in a form that you don't know it's really my name."

He collaborated with a pediatrics group (Pediatrics 2004) in the past, exploring the crossover between medicine and art. This is not an official publication of The Rockefeller University. University administration does not produce this newsletter. The views expressed by the contributors to this publication may not necessarily reflect views or policies of the University.
Dear Fellow Students,

We are working for you! The Student Representative Council (SRC) has been advocating on your behalf and we would like to tell you what we’ve accomplished.

This is just a reminder that recently the much-beloved Bronk fund had been in danger of diminishing too fast to sustain itself. To solve this problem, we plan to increase our fundraising by 25% this year, which will result in an additional $10,000 in Bronk funding.

The SRC is currently working on several other initiatives, including planning for the upcoming Spring Ball and coordinating with the Dean’s Office to ensure that all students have access to the resources they need to succeed.

As always, we appreciate your support and encourage you to join us in our efforts to make Rock U a better place for all students.

Sincerely,
The SRC
Zena Nackr oder

Search for the name of the 1958 Nobel laureate, Joshua Lederberg, on the internet, and page after page point to his vision and groundbreaking discoveries. In recent years, those electronic tributes have taken on an added poignancy as scientists and other beneficiaries of his intellect paid homage to a revered man. Josh, as we all knew him, ranks with the great scientific pioneers because of the range of his expertise and insight. Not only did he help revolutionize genetics by discovering two of the three mechanisms of gene transfer (conjugation and transduction), but he also made valuable contributions to the “nuts and bolts” of microbiology (replica plating and protoplast induction of Escherichia coli K12 by penicillin). He was an authoritative scholar on a variety of subjects as well as a wordsmith, he coined the words “plasmid” and “xenobiology,” the latter in partnership with Carl Sagan.

To cover Joshua Lederberg’s life story, and with any degree of authority, is the task of “apter craftsmen,” to use his own words. This tribute presents only selected highlights, though one must emphasize the boundless curiosity that his Ph. D. advisor, Edward Lawrie Tatum, and George Beadle, who both shared the Nobel prize with Josh, likely saw in him and that others came to know in his later years in his role as a scientific statesman. 1

Josh, Beadle, and Tatum shared attributes of leadership and excellence, which helped them forge lasting scientific and social bonds. Josh, a rabbi’s son born in Montclair, New Jersey, 2 found a kindred spirit in George Beadle; a farmer’s son born in Wahoo, Nebraska. 3 Beadle was a contemporary of major scientists like Barbara McClintock, the maize geneticist, who switched model organisms with great ease, progressing from Drosophila to Neurospora. His work included the observation that the yeast petite phenotype had its genetic elements (transposons) and Boris Ephrussi, whose achievements emphasized the value of “her work on the mechanism of control of gene action in maize, involving the action and interaction of two independent loci.” 4

Josh’s later research interests have been told to the students at the Rockefeller University (1951), and with any degree of authority, is the task of “apter craftsmen,” to use his own words. This tribute presents only selected highlights, though one must emphasize the boundless curiosity that his Ph. D. advisor, Edward Lawrie Tatum, and George Beadle, who both shared the Nobel prize with Josh, likely saw in him and that others came to know in his later years in his role as a scientific statesman. 1

Josh’s connections with Rutgers University are great, progressing from maize to fruit flies, where he was the director of the chemistry skills of Tatum, and eventually to the bread mold, Neurospora crassa. His collaboration with Tatum using Neurospora auxotrophs to develop the “gene autonomy en-zyme” hypothesis and the later’s background on the nutritional requirements of bacteria set the stage for the entrance of the prodyg, Joshua Lederberg.

Scientific contributions and plaudits started arriving soon after his colleagues read his groundbreaking 1946 paper, “Gene Recombination in Escherichia coli.” 5 He used the properties of double and triple mutants to discover that bacteria could sexually exchange genes. 6 Beadle’s biographers cite excerpts from his congratulatory letter to Tatum regarding his student’s discovery, “The sex life of bacteria seemed darned interesting... It looks to me like the most important discovery in bacteriology in the last 100 years.” 7 Rockefeller University (1951) was to become the last scientific home of both Tatum (d. 1975) and Josh.

Josh’s groundbreaking work continued with, among others, Norton Zinder, Josh’s famous graduate student. Norton and Josh studied genetic exchange in Sallmonella 8 and published their seminal work demonstrating transduction. Norton later identified the first phage that contained DNA as its genetic material. 9 He was appointed as an institute professor in 1964.

One anecdote from the period when Josh was serving as the fifth president of The Rockefeller University is his spirit of generosity. Earlier Nobel belom nominations for Barbara McClintock’s discovery of genetic transposition in maize (work done in the 1940s) had been unsuccessful and Marcus Rhoades, who concurred with the opinion that McClintock’s work was a forerunner to the eponymous model of Jacob and Monod, wrote to Josh asking him to “lead the charge” that culminated in her overdue Nobel prize (1983). 10 Josh readily complied, emphasizing the value of “her work on the mechanism of control of gene action in maize, involving the action and interaction of two independent loci.”

Iwona Stroynowski (one of Josh’s students at Stanford in the late 1970s) noted that with any degree of authority, is the task of “apter craftsmen,” to use his own words. This tribute presents only selected highlights, though one must emphasize the boundless curiosity that his Ph. D. advisor, Edward Lawrie Tatum, and George Beadle, who both shared the Nobel prize with Josh, likely saw in him and that others came to know in his later years in his role as a scientific statesman. 1

Josh’s connections with Rutgers University are great, progressing from maize to fruit flies, where he was the director of the chemistry skills of Tatum, and eventually to the bread mold, Neurospora crassa. His collaboration with Tatum using Neurospora auxotrophs to develop the “gene autonomy en-zyme” hypothesis and the later’s background on the nutritional requirements of bacteria set the stage for the entrance of the prodyg, Joshua Lederberg.

Scientific contributions and plaudits started arriving soon after his colleagues read his groundbreaking 1946 paper, “Gene Recombination in Escherichia coli.” 5 He used the properties of double and triple mutants to discover that bacteria could sexually exchange genes. 6 Beadle’s biographers cite excerpts from his congratulatory letter to Tatum regarding his student’s discovery, “The sex life of bacteria seemed darned interesting... It looks to me like the most important discovery in bacteriology in the last 100 years.” 7 Rockefeller University (1951) was to become the last scientific home of both Tatum (d. 1975) and Josh.

Josh’s groundbreaking work continued with, among others, Norton Zinder, Josh’s famous graduate student. Norton and Josh studied genetic exchange in Sallmonella 8 and published their seminal work demonstrating transduction. Norton later identified the first phage that contained DNA as its genetic material. 9 He was appointed as an institute professor in 1964.

One anecdote from the period when Josh was serving as the fifth president of The Rockefeller University is his spirit of generosity. Earlier Nobel belom nominations for Barbara McClintock’s discovery of genetic transposition in maize (work done in the 1940s) had been unsuccessful and Marcus Rhoades, who concurred with the opinion that McClintock’s work was a forerunner to the eponymous model of Jacob and Monod, wrote to Josh asking him to “lead the charge” that culminated in her overdue Nobel prize (1983). 10 Josh readily complied, emphasizing the value of “her work on the mechanism of control of gene action in maize, involving the action and interaction of two independent loci.”

Iwona Stroynowski (one of Josh’s students at Stanford in the late 1970s) noted that Josh had a deep understanding of the scientific community and was one of the molding influences on his career. 1

In 1781, Guilford Courthouse was an out-of-the-way county seat in rural North Carolina, but the events that brought the two armies to this tiny town had begun four years earlier. In fact, the American victory at Saratoga in 1777, France pledged to help the rebels in their struggle for independence from Britain. With fighting in the North at a stalemate, the British quickly changed their strategy to focus on subduing the southern colonies. The redcoats easily captured Savannah and Charleston, moving down to the interior of the South, where they hoped loyalist factions would aid their cause. After a near American defeat at the Battle of Camden in the summer of 1780, George Washington appointed Nathaniel Greene as the new commander of the southern army. On April 16, 1781, Greene decided to face Cornwallis at Guilford Courthouse, where he set up a series of three defensive lines. The land was thick and wooded, which favored the rebels, and the British had to complete an exhausting 12-mile march to meet theAmericans. However, many of Greene’s troops were undisciplined militiamen who had a tendency to abandon their positions once the fighting started. Sure enough, the British quickly broke through the Americans’ first line. Heavy combat led the second line to fall back as well, and when his left flank collapsed, Greene ordered the remainder of his troops to retreat. After the battle, Cornwallis gradually realized that his victory had come at a terrible cost. More than 500 of his soldiers were killed or wounded, and the remaining men were exhausted. The Americans, in contrast, lost only six percent of their army to casualties, and even the militiamen who had fled during the early fighting were expected to eventually return to the ranks. Greene might have lost the battle, but the result helped his overall strategy succeed. Unable to continue his pursuit of the Americans, Cornwallis made his way to the coast to regroup and care for his sick and wounded men. Greene, meanwhile, secured the interior of the South, leaving the British pinned with their backs to the sea. Support for the war in London now began to wane. When news of the battle reached the British capital, Charles James Fox, a member of Parliament, lamented, “another such victory would ruin the British Army.”

In fact, there was no need for another such victory. On October 16, 1781, Cornwells surrendered to a combined American and French army at Yorktown. Although there were still many redcoats in America, with more than 20,000 in New York alone, the tide had turned after Guilford Courthouse. Britain agreed to recognize the independence of the thirteen colonies by signing the Treaty of Paris in 1783, thus changing the course of world history. Today, the Guilford Courthouse battlefield lies within the city limits of Greensboro, a city named for the general who lost the battle that helped win the war. Nathaniel Greene settled in Georgia after the revolution, content to stay out of the limelight surrounding the early days of the new United States. He died in 1786, remembered by those with whom he served as one of America’s best soldiers. Even to this day, he is perhaps the only one in America’s military history whose biggest success came from a loss. 6

http://www.nps.gov/gaco/
Photography and collage image by Daniel Andor
A Tribute to Joshua Lederberg (May 23, 1925 – February 2, 2008)
Zena Nackrudien

Search for the name of the 1958 Nobel laureate, Joshua Lederberg, on your internet, and page after page point to his vision and ground-breaking discoveries. In recent weeks, those electronic tributes have taken on an added poignancy as scientists and other beneficiaries of his intellect paid homage to a revered man. Josh, as we all knew him, ranks with the great scientific founders because of the range of his expertise and insight. Not only did he help revolutionize genetics by discovering three of the two mechanisms of gene transfer (conjugation and transduction), but he also made valuable contributions to the “nuts and bolts” of microbiology (replace plating and protoplast induction of Escherichia colia by penicillin). He was an authoritative scholar on a variety of subjects as well as a wordsmith, he coined the words “plasmid” and “exobiology,” the latter in partnership with Carl Sagan.

To cover Joshua’s life, work, and with any degree of authority, is the task of “apter craftsmen,” to use his own words. This tribute presents only selected highlights, though one must emphasize that contained almost negligible. After his colleagues read his work in the 1946 paper, “Gene Recombination in E. coli,” Joshua Lederberg saw in him and that others came to know in his later years in his role as a scientific statesman.1

Josh, Beadle, and Tatum shared attributes of leadership and excellence, which helped them forge lasting scientific and social bonds. Josh, a rabbi’s son born in Montclair, New Jersey,2 found a kindred spirit in George Beadle, a farmer’s son born in Wahoo, Nebraska.3 Beadle was a contemporary of major scientists like Barbara McClintock, the maize cyto geneticist who received a Nobel Prize for her discovery of mobile genetic elements (transposons) and Boris Ephrussi, whose achievements included the observation that the yeast petite phenotype had its genetic basis in the mitochondria. Beadle and others were geneticists who switched model organisms with great ease, progressing from maize to fruit flies, where he was aide by the chemistry skills of Tatum, and eventually to the bread mold, Neurospora crassa. His collaboration with Tatum using Neurospora auxotrophs to develop the “niche enzyme” hypothesis and the latter’s background on the nutritional requirements of bacteria set the stage for the entrance of the prodigy, Joshua Lederberg.

Scientific commentaries and plaudits started arriving soon after his colleagues read the work of Joshua’s discovery in the 1946 paper, “Gene Recombination in Escherichia coli.”4 He used the properties of double and triple mutants to discover that bacteria could sexually exchange genes. Beadle’s biographers cite excerpts from his congratulatory letter to Tatum regarding his student’s discovery, “The sex life of bacteria seemed darned interesting...It looks to me like the most important discovery in bacteriology in the last 100 years.”5 Rockefeller University (RC) was to become the last scientific home of both Tatum (d. 1975) and Josh.

Josh’s groundbreaking work continued with, among others, Norton Zinder, Josh’s famous graduate student. Norton and Josh studied genetic exchange in Salmonella6 and published their seminal work demonstrating transduction.7 Norton later identified the first phage that contained RNA as its genetic material.8 He was appointed as an NIH professor in 1964.

One anecdote from the period when Josh was serving as the fifth president of RC illustrates his spirit of generosity. Earlier Nobel placements for Barbara McClintock’s discovery of genetic transposition in maize (work done in the 1940s) had been unsuccessful, and McClintock, who concurred with the opinion that McClintock’s work was a forerunner to the operon model of Jacob and Monod, wrote to Josh asking him to “lead the charge” that culminated in her overdue Nobel prize (1983). Josh readily complied, emphasizing the value of “her work on the mechanism of control of gene action in maize, involving the action and interaction of two independent loci.”9

Josh’s connections with RC pre-dated his 1978 appointment as president. He was intimately familiar with the work of Oswald Avery (1944-2005) who, together with MacLeod and McCarty, identified DNA as the genetic material in bacterial transformation.10 In an interview, Josh recollected the trio’s publication from their time at RC as having been one of the molding influences on his career.11 Some of Josh’s later research interests have been told to the reader in his autobiography, “A Young Gypsy.”12

In 1962, a grateful nation awarded him his highest prize, the Nobel.4,000 at Green’s command. Cornwallis pursued Greene through the North Carolina countryside, but the Americans avoided a large battle. Finally, after weeks of skirmishes, Greene decided to face Cornwallis at Guilford Courthouse, where he set up a series of three defensive lines. The land was thick and wooded, which favored the defenders, and the British had to complete an exhausting 12-mile march to meet the Americans. However, many of Greene’s troops were undisciplined militiamen who had a tendency to abandon their positions once the fighting started. Sure enough, the British quickly broke through the Americans’ first line. Heavy combat led the second line to fall back as well, and when his left flank collapsed, Greene ordered the remainder of his troops to retreat.

After the battle, Cornwallis gradually realized that his victory had come at a terrible cost. More than 500 of his soldiers were killed or wounded, and the remaining men were exhausted. The Americans, in contrast, lost only six percent of their army to casualties, and even the militiamen who had fled during the early fighting were expected to eventually return to the ranks. Greene might have lost the battle, but the result helped his overall strategy succeed. Unable to continue his pursuit of the Americans, Cornwallis made his way to the coast to regroup and care for his sick and wounded men. Greene, meanwhile, secured the interior of the South, leaving the British pinned with their backs to the sea. Support for the war in London now began to wane. When news of the battle reached the British capital, Charles James Fox, a member of Parliament, lamented, “another such victory would ruin the British Army.”

In fact, there was no need for another such victory. On October 16, 1780, Cornwallis surrendered to a combined American and French army at Yorktown. Although there were still many redcoats in America, with more than 20,000 in New York alone, the tide had turned after Guilford Courthouse. Britain agreed to recognize the independence of the thirteen colonies by signing the Treaty of Paris in 1783, thus changing the course of world history. Today, the Guilford Courthouse battlefield lies within the city limits of Greensboro, a city named for the general who lost the battle that helped win the war. Nathaniel Greene settled in Georgia after the revolution, content to stay out of the limelight surrounding the early days of the new United States. He died in 1786, remembered by those with whom he served as one of America’s best soldiers. Even to this day, he is perhaps the only one in America’s history whose biggest success came from a loss.13

Turning the Tide

Winning the Revolution’s Southern Campaign

Jason Crockett

Just before the Revolution, General Greene’s March proved fatal for Julius Caesar, so too did they foretell disaster for the British army in the American Revolutionary War. On March 21, 1781, British Lord Cornwallis and his army of 3,500 men arrived at the small community of Guilford Courthouse, North Carolina. Although he was outnumbered by more than two to one, Lord Cornwallis had become accustomed to victory against a ragtag group of Americans commanded by General Nathaniel Greene. However, the British triumph came at an extraordinary cost. In securing an unimportant piece of land with no strategic value, Cornwallis lost more than one quarter of his men. As a result, he abandoned his plan to pursue Greene’s army inland and instead marched to the coast, where he hoped to receive fresh supplies and troops from the British navy. Seven months later, Cornwallis surrendered to George Washington at Yorktown, Virginia, and the war was over.

The Guilford Courthouse was an out-of-the-way county seat in rural North Carolina, but the events that brought the two armies to this tiny town had begun four years earlier. In 1777, the American victory at Saratoga, France pledged to help the rebels in their struggle for independence from Britain. With fighting in the North at a stalemate, the British quickly changed their strategy to focus on subduing the southern colonies. The redcoats easily captured Savannah and Charleston before moving into the interior of the South, where they hoped loyalist factions would aid their cause. After Greene defeated the American detachment at the Battle of Camden in the summer of 1780, George Washington appointed Nathaniel Greene as the new commander of the southern armies. However, many of Greene’s men who had fled during the early fighting were killed or wounded, and the remaining men were exhausted. The Americans, in contrast, lost only six percent of their army to casualties, and even the militia men who had fled during the early fighting were expected to eventually return to the ranks. Greene might have lost the battle, but the result helped his overall strategy succeed. Unable to continue his pursuit of the Americans, Cornwallis made his way to the coast to regroup and care for his sick and wounded men. Greene, meanwhile, secured the interior of the South, leaving the British pinned with their backs to the sea. Support for the war in London now began to wane. When news of the battle reached the British capital, Charles James Fox, a member of Parliament, lamented, "another such victory would ruin the British Army.”

In fact, there was no need for another such victory. On October 16, 1780, Cornwallis surrendered to a combined American and French army at Yorktown. Although there were still many redcoats in America, with more than 20,000 in New York alone, the tide had turned after Guilford Courthouse. Britain agreed to recognize the independence of the thirteen colonies by signing the Treaty of Paris in 1783, thus changing the course of world history. Today, the Guilford Courthouse battlefield lies within the city limits of Greensboro, a city named for the general who lost the battle that helped win the war. Nathaniel Greene settled in Georgia after the revolution, content to stay out of the limelight surrounding the early days of the new United States. He died in 1786, remembered by those with whom he served as one of America’s best soldiers. Even to this day, he is perhaps the only one in America’s history whose biggest success came from a loss.13

http://www.nps.gov/guco/
Dear Fellow Students,

We are calling on you for work! The Student Representative Council (SRC) has been advocating on your behalf and we would like to tell you what we’ve accomplished.

This is just a reminder that recently the much-hailed Bronk fund had been in danger of diminishing too fast to sustain itself. To solve this problem, we are working to raise up to $125 per year, for each dollar paid by the Bronk fund, the student must pay a dollar as well. If you want a buy one, get one free ticket to see a wonderful Rockefeller lab talk, Bronk fund will give you back $62.50. This way we gain more culture per Bronk-fund-dollar and we keep the Bronk fund available for future students.

Courses, external and internal

Courses, both internal and external, were a major topic at the SRC’s recent meeting with President Paul Nurse, Dean Sidney Strickland, and Assistant Dean Emily Harms. First, we discussed the need for more internal courses. Some students told us that we need both openness and resistance. The fact that the time commitment and the rigor here take valuable and rigorous courses at Cold Spring Harbor Laboratory, but re...
Maharishi, TM & Beyond
Engin Öztöngü

Maharishi Mahesh Yogi, who introduced the West to Transcendental Meditation (TM), died in the Netherlands on February 5 at the age of 91. TM was originally viewed with skepticism but eventually gained worldwide acceptance and medical credibility. The movement really took off after the Beatles visited Maharishi’s ashram in India in 1968. Maharishi had a profound influence on the Beatles’ later career. Other famous practitioners of TM include the Beach Boys, Rolling Stones, Mia Farrow, Sheryl Crow, Sting, radio host Howard Stern, and singer and songwriter Donovan. Comedians Andy Kaufman and magician Doug Henning were also students of Maharishi, while Hollywood directors Clint Eastwood and David Lynch have both practiced the technique. Maharishi left six million TM practitioners and worldwide TM organizations behind.

TM was dismissed as hippie mysticism in the beginning. However, Maharishi’s relentless persistence on its scientific validations was unquestionably remarkable. Partly due to his efforts, there have been more than 600 studies throughout the world during the past 40 years.

Coco144
Graffiti in the Lab
Manuel Castillo-Muñoz

If you have recently walked through the corridor in the lower level of the Bronk Building, you might have noticed that the wall next to the elevator has been covered by plastic sheets for almost two months. “Oh, it’s being repaired,” you might have thought. Well, the truth is far from that! Behind all those plastic sheets is a graffiti mural. Natural Selections got in touch with the painter of the mural, who turned out to be a Rockefeller employee. His artistic nickname is Coco144. Dr. Hudspeth wanted a mural for the outer wall of his lab at Bronk. He wanted color,” explained Coco. “He has been extremely supportive and very brave to take on a challenge like this. He gave me some articles, drawings, but he kept on insisting that it didn’t have to be scientific specific. But I did want to incorporate something that had to do with his research. I got that idea partly from the projected image on the wall. After that, he brought it to the Bronk building, glued it onto the wall, traced his reference lines, took the paper off the wall, and then started to paint. He has done that with two or three pieces. The rest is being rehearsed.

The new mural at RU is another bridge he is crossing from art to science. Although they might be seen as completely different fields, science and art share similarities. “This is like my experiment,” explains Coco. “You have to do a certain amount of research, studies; you go through experiments until you get it right.” Coco is delighted to paint science. “To me, there is nothing but pros. The only thing that has really challenged me is that they are so many pieces. I have to paint science and art share similarities: “This is like my experiment,” explains Coco. “You have to do a certain amount of research, studies; you go through experiments until you get it right.” Coco is delighted to paint science. “To me, there is nothing but pros. The only thing that has really challenged me is that they are so many pieces. I have to paint science.